
EXTREME ULTRAVIOLET (EUV) INTERFEROMETRY

Measuring Atomic-Scale Optical Imperfections for Future Microchip Generations

For 30 years, the density of
circuit elements on micro-

chips has doubled roughly every
two years, resulting in progressively
smaller, faster, and cheaper comput-
ers. To continue this rate of
progress into the next century, we
will require extremely precise and
accurate optical components that
can focus light sharply enough to
“etch” up to a billion circuit ele-
ments onto a square centimeter of
silicon. Crafting such precision op-
tical components requires equally
precise and accurate measurement
tools, such as the phase-shifting,
point-diffraction interferometer
(PS/PDI) that has been developed
at the Advanced Light Source
(ALS).

The size of the circuit features
that can be mass-produced on a
microchip depends on the wave-
length of light used to etch the fea-
tures onto the chips. Past
reductions in feature size were pri-
marily achieved by using shorter
wavelengths of light. However, in-
dustry experts predict that, in a few
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years, we will reach a wavelength at
which the refractive lenses used for
focusing will absorb light rather
than transmit it. Anticipating this
roadblock, the semiconductor in-
dustry has developed a “roadmap”
that explores several options for
getting around this limit within the
next decade.

One of the options uses the re-
flection (as opposed to refraction)
of light at 13 nm, an extreme ultra-
violet (EUV) wavelength optimized
for use with curved mirrors coated
with multilayers consisting of a
large number of alternating scatter-
ing and transmitting layers with
thicknesses less than the distance
over which the radiation is ab-
sorbed. The mirrors are curved to
form a reduced image of the circuit
patterns onto the microchip, and
the thicknesses of the layers are
chosen so that the light waves re-
flecting from each layer add con-
structively. Since this is a resonant
system tuned to 13 nm that is ex-
tremely sensitive to changes in
wavelength, angle of incidence, and

layer thickness, aberrations caused
by coating defects and thickness
errors can only be measured using
13-nm light. Furthermore, the re-
quired fabrication tolerances are
incredibly stringent: to verify the
shape of such a mirror, we need a
measurement tool with an accuracy
of 0.10 nm—smaller than the size
of a single atom!

The PS/PDI is a measurement
tool designed to meet these specifi-
cations. This interferometer is per-
manently installed on Beamline
12.0 at the ALS, which is the best
available source of very bright,
highly focused 13-nm light. The
beam first passes through a pinhole,
which uses spatially coherent undu-
lator radiation to produce a spheri-
cal wavefront. A diffraction grating
splits the light into several beams
that reflect off of the mirrors being
tested. One beam (the test beam)
passes through a window large
enough to preserve the aberrations
picked up from the test mirrors.
Another beam (the reference beam)
passes through a second pinhole

that is small enough to “filter out”
the aberrations, again producing a
uniform, spherical wave. When the
two beams interfere, they produce a
pattern of light and dark fringes
that yields information about flaws
in the test mirrors.

To determine the interfer-
ometer’s accuracy, the researchers
replaced the test-beam window
with another pinhole, in effect pro-
ducing two reference beams. The
interference between the two refer-
ence beams reveals the systematic
error introduced by the interferom-
eter itself. This was found to be just
under 0.05 nm, a significant im-
provement over the design goal of
0.10 nm, and well beyond the cur-
rent state of the art in optical me-
trology. Although a commercially
viable chip manufacturing process
would still be six to ten years away,
this achievement represents an im-
portant milestone that paves the
way for the potential use of EUV
light in producing future genera-
tions of microchips.
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Measuring Atomic-Scale Optical Imperfections for Future Microchip Generations

•Semiconductor industry “roadmap” for microchips
– Density of circuit elements doubles every two years

– Smaller circuit features      shorter wavelength light

– Wavelengths approaching limits of refractive optics

– Developing new technologies to keep up pace

•Extreme ultraviolet (EUV) lithography
– One of several options being explored by industry

– Big wavelength jump from DUV (248 nm) down to 13 nm

– Curved, multilayer-coated mirrors for pattern reduction

– Extremely stringent tolerance requirements on mirrors

•Phase-shifting, point-diffraction interferometer (PS/PDI)
– Measures tiny imperfections in EUV mirrors

– Uses coherent 13-nm undulator radiation available at ALS

– Demonstrated accuracy of 0.05 nm, less than size of 1 atom!
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